Cross-modal plasticity in deaf child cochlear implant candidates assessed using visual and somatosensory evoked potentials.
نویسندگان
چکیده
INTRODUCTION Cross-modal plasticity has been extensively studied in deaf adults with neuroimaging studies, yielding valuable results. A recent study in our laboratory with deaf-blind children found evidence of cross-modal plasticity, revealed in over-representation of median nerve somatosensory evoked potentials (SEP N20) in left hemisphere parietal, temporal and occipital regions. This finding led to asking whether SEP N20 changes are peculiar to deaf-blindness or are also present in sighted deaf children. OBJECTIVE Assess cross-modal plasticity in deaf child cochlear implant candidates using neurophysiological techniques (visual evoked potentials and median nerve somatosensory evoked potentials). METHODS Participants were 14 prelingually deaf children assessed in the Cuban Cochlear Implant Program. Flash visual-evoked potentials and SEP N20 were recorded at 19 scalp recording sites. Topographic maps were obtained and compared to those of control group children with normal hearing. Analysis took into account duration of hearing loss. RESULTS Topographic maps of flash visual-evoked potentials did not show changes in deaf child cochlear implant candidates. However, SEP N20 from right median nerve stimulation did show changes from expansion of cortical activation into the left temporal region in deaf children aged ≥7 years, which was interpreted as neurophysiological evidence of cross-modal plasticity, not previously described for this technique and type of somatosensory stimulus. We interpret this finding as due in part to duration of deafness, particularly related to handedness, since expansion was selective for the left hemisphere in the children, who were all right-handed. CONCLUSIONS Cortical over-representation of SEP N20 in the left temporal region is interpreted as evidence of cross-modal plasticity that occurs if the deaf child does not receive a cochlear implant early in life-before concluding the critical period of neural development-and relies on sign language for communication.
منابع مشابه
Cross-modal plasticity in Cuban visually-impaired child cochlear implant candidates: topography of somatosensory evoked potentials.
INTRODUCTION Studies of neuroplasticity have shown that the brain's neural networks change in the absence of sensory input such as hearing or vision. However, little is known about what happens when both sensory modalities are lost (deaf-blindness). Hence, this study of cortical reorganization in visually-impaired child cochlear implant (CI) candidates. OBJECTIVE Assess cross-modal plasticity...
متن کاملAuditory and Visual Electrophysiology of Deaf Children with Cochlear Implants: Implications for Cross-modal Plasticity
Deaf children who receive a cochlear implant early in life and engage in intensive oral/aural therapy often make great strides in spoken language acquisition. However, despite clinicians' best efforts, there is a great deal of variability in language outcomes. One concern is that cortical regions which normally support auditory processing may become reorganized for visual function, leaving fewe...
متن کاملVisual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users.
Cross-modal reorganization in the auditory cortex has been reported in deaf individuals. However, it is not well understood whether this compensatory reorganization induced by auditory deprivation recedes once the sensation of hearing is partially restored through a cochlear implant. The current study used electroencephalography source localization to examine cross-modal reorganization in the a...
متن کاملVisual Cross-Modal Re-Organization in Children with Cochlear Implants
BACKGROUND Visual cross-modal re-organization is a neurophysiological process that occurs in deafness. The intact sensory modality of vision recruits cortical areas from the deprived sensory modality of audition. Such compensatory plasticity is documented in deaf adults and animals, and is related to deficits in speech perception performance in cochlear-implanted adults. However, it is unclear ...
متن کاملCortical cross-modal plasticity following deafness measured using functional near-infrared spectroscopy
Evidence from functional neuroimaging studies suggests that the auditory cortex can become more responsive to visual and somatosensory stimulation following deafness, and that this occurs predominately in the right hemisphere. Extensive cross-modal plasticity in prospective cochlear implant recipients is correlated with poor speech outcomes following implantation, highlighting the potential imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- MEDICC review
دوره 15 1 شماره
صفحات -
تاریخ انتشار 2013